4 research outputs found

    Enhancing Traditional Recommender Systems via Social Communities

    No full text
    Collaborative Filtering (CF) has become the most popular approach for developing Recommender Systems in diverse business applications. Unfortunately, problems such as the cold-start problem (i.e., new users or items enter the system and for those no previous preference information is available) and the gray sheep problem (i.e., cases in which a user profile does not match any other profile in the user community) are widely recognized for hindering recommendation effectiveness of traditional CF methods. To alleviate such problems, substantial research has focused on enhancing CF with social information about users (e.g., social relationships and communities). However, despite the crescent interest in social-based approaches, researches and practitioners face the challenge of developing their own Recommender System architecture for appropriately combining social and collaborative filtering methods to improve recommendation results. In this paper, we address this issue by introducing a flexible architecture to support researchers and practitioners in the task of designing real-world Recommender Systems that exploit social network data. We focus on detailing our proposed architecture modules and their interplay, potential algorithms for extracting and combining relevant social information, and candidate technologies for handling diverse and massive data volumes. Additionally, we provide an empirical analysis demonstrating the effectiveness of the proposed architecture on alleviating the cold-start problem over a concrete experimental case

    Energy and Resource Savings through Innovative and CFD-based Design of Liquid/Liquid Gravity Separators

    Full text link
    Computational-Fluid-Dynamics (CFD)-Simulationen in Kombination mit Tropfenpopulationsbilanzen führen zu einem praxisgerechten Standard, um auf Basis verfügbarer Prozessdaten den Strömungsverlauf – und damit die Verweilzeitverteilung – in liegenden Abscheidern beliebiger Größe zu berechnen. Durch Implementierung des Tropfenverhaltens wird auch die Berechnung eines tropfenspezifischen Abscheider-Wirkungsgrades ermöglicht. Die Methodenentwicklung erfolgte mit baugleichen Anlagen an drei verschiedenen Standorten. Die darauf beruhenden CFD-Simulationen wurden erfolgreich mit experimentellen Daten der beteiligten Industriepartner validiert.ERICA

    Seven Paradoxes of Business Process Management in a Hyper-Connected World

    Get PDF
    Business Process Management is a boundary-spanning discipline that aligns operational capabilities and technology to design and manage business processes. The Digital Transformation has enabled human actors, information systems, and smart products to interact with each other via multiple digital channels. The emergence of this hyper-connected world greatly leverages the prospects of business processes - but also boosts their complexity to a new level. We need to discuss how the BPM discipline can find new ways for identifying, analyzing, designing, implementing, executing, and monitoring business processes. In this research note, selected transformative trends are explored and their impact on current theories and IT artifacts in the BPM discipline is discussed to stimulate transformative thinking and prospective research in this field
    corecore